Qualitative Analysis

Pre-lab: Pages 230 – 231 No Post-Lab Questions Pre-lab and Lab report 50%

Introduction to Qualitative Analysis

- Qualitative analysis is used to separate and detect cations and anions in a sample substance.
- Qualitative analysis is the procedure by which one can determine the nature, but not the amount of species in a mixture.

Experimental Aims

- To observe the chemical properties of ten cations: Na⁺,NH₄⁺, Ag⁺, Fe³⁺, Al³⁺, Cr³⁺, Ca²⁺, Mg²⁺, Ni²⁺, Zn²⁺
- To perform a series of tests that isolates then confirms each of these ions.
- Identification of an unknown solution of cations.

Note

• Part II: Separation of anions will not be performed.

Read pages 241 – 242, experimental techniques.

Lab Techniques

- Ensure all glassware is clean, but it does not need to be dry.
- Use distilled water at all times
- Label test tubes to avoid confusion
- Mix solutions by flicking the test tube
- Estimate volumes by assuming 20 drops by pipette ≈ 1ml

Example of an interfering ion

- The formation of a yellow precipitate upon addition of aqueous S²⁻ confirms the presence of Cd²⁺ in a solution.
- The color of this compound, however, will be hidden if any Pb²⁺ or Cu²⁺ are present in solution since they will form a black precipitate with added S²⁻.
- In order to test for cadmium, then, any interfering ions must first be removed.

Experimental Procedure

- You will be provided with 2 samples.
- One will contain all of the cations to be detected. This is your reference solution
- The other test-tube will contain a number of unknown cations that you will need to identify by experimental observations.

• Make careful notes of your observations.

• Look closely for gases, and note colors of solutions and precipitates.

• Recap on your solubility rules

Solubility Guidelines

- 1. All nitrates are soluble.
- 2. Practically all sodium, potassium, and ammonium salts are soluble.
- 3. All chlorides, bromides, and iodides are soluble except those of silver, mercury(I), and lead(II).
- 4. All sulfates are soluble except those of strontium, barium, and lead(II), which are insoluble, and those of calcium and silver which are moderately soluble.
- 5. All carbonates, sulfites, and phosphates are insoluble except those of sodium, potassium, and ammonium.

Types of reactions

- Precipitation
- Complex ion formation
- Redox reactions
- Acid-base reactions

Some means of identifying ions by qualitative analysis are:

- Color changes or color of the solution.
- Evolution of gas
- Change in pH (acidity or basicity)
- Or ability to redissolve a precipitate by addition of a complexing ligand.

- If a gas is given off, note the color and odor of the gas.
- The nitrate, carbonate, and sulfite ions may decompose, as illustrated by the reactions:
 - 2 $Pb(NO_3)_2(s) + heat --> 2 PbO(s) + O_2(g) + 4$ $NO_2(g, brown)$
 - CaCO₃(s) + heat --> CaO(s) + CO₂(g, colorless, odorless)
 - CaSO₃(s) + heat --> CaO(s) + SO₂(g, colorless, pungent)
- Some bromides and iodides decompose to give $Br_2(g, orange-brown)$ and $I_2(g, purple)$.

Common ways to test for ions

- Ag⁺, Hg₂²⁺, Pb²⁺ Precipitated in 1 M HCl
- Bi³⁺, Cd²⁺, Cu²⁺, Hg²⁺, (Pb²⁺), Sb³⁺ and Sb⁵⁺, Sn²⁺ and Sn⁴⁺ Precipitated in 0.1 M H₂S solution at pH 0.5

Common grouping of cations

- Al³⁺, (Cd²⁺), Co²⁺, Cr³⁺, Fe²⁺ and Fe³, Mn²⁺, Ni²⁺, Zn²⁺
 Precipitated in 0.1 M H₂S solution at pH 9
- Ba²⁺, Ca²⁺, K⁺, Mg²⁺, Na⁺, NH₄⁺
 Ba²⁺, Ca²⁺, and Mg²⁺ are precipitated in 0.2 M (NH₄)₂CO₃ solution at pH 10; the other ions are soluble

Common Qualitative Analysis Reagents

- Many reagents are used in qualitative analysis, but only a few are involved in nearly every group procedure.
- The four most commonly used reagents are HCl, HNO₃, NaOH and NH₃.
- Understanding the uses of the reagents is helpful when planning an analysis.

Reagent	Effect	
HC1	Increases [H ⁺] Increases [Cl ⁻] Decreases [OH ⁻] Dissolves insoluble carbonates, chromates, hydroxides, some sulfates Destroys hydroxo and NH ₃ complexes Precipitates insoluble chlorides	
HNO ₃	Increases [H ⁺] Decreases [OH ⁻] Dissolves insoluble carbonates, chromates, and hydroxides Dissolves insoluble sulfides by oxidizing sulfide ion Destroys hydroxo and ammonia complexes Good oxidizing agent.	

NaOH	Increases [OH ⁻] Decreases [H ⁺] Forms hydroxo complexes Precipitates insoluble hydroxides
NH ₃	Increases $[NH_3]$ Increases $[OH^-]$ Decreases $[H^+]$ Precipitates insoluble hydroxides Forms NH_3 complexes Forms a basic buffer with NH_4^+

Step 1: Testing for Na⁺ and NH₄⁺

Test for sodium ions using a flame test.

Test for ammonium ions by addition of base.

Flame Tests

- Heat the solution to a moist residue, use the evaporating dish and a bunsen flame.
- Solutions of ions, when mixed with concentrated HCl and heated on a nickel/chromium wire in a flame, cause the flame to change to a color characteristic of the atom.
- A flame test can be used as a confirmatory test.

- Sodium is often an impurity so will almost always see a yellow flame. Therefore careful observations need to be recorded.
- A brilliant yellow persistent flame indicates the presence of sodium.

Test for Silver ions

• All chloride salts are water soluble except those of silver, mercury and lead.

• Of the ten cations, only Ag forms an insoluble chloride.

Test for Silver ions

- Take your solution and add HCl
- Observe what happens.
- A precipitate of AgCl should form if Ag⁺ is present.
- Add a slight excess of HCl to ensure complete precipitation (equilbrium).

Confirmatory Test: Reaction with ammonia

• Add NH_3 drop wise to the precipitate, stir or shake the solution.

 Observe any reaction ~ silver forms a complex ion with ammonia, lead and mercury do not behave in the way.

Complexes with Ammonia

Acid Solution	Basic Solution	Solution with Excess NH ₃	Color of Complex
Ni ²⁺ (aq)	Ni(OH) ₂ (s)	Ni(NH ₃) ₆ ²⁺ (aq)	violet
Cu ²⁺ (aq)	Cu(OH) ₂ (s)	Cu(NH ₃) ₄ ²⁺ (aq)	blue
Zn ²⁺ (aq)	Zn(OH) ₂ (s)	$Zn(NH_3)_4^{2+}(aq)$	colorless
Ag ⁺ (aq)	$Ag_2O(s)$	$Ag(NH_3)_2^+(aq)$	colorless
Cd ²⁺ (aq)	Cd(OH) ₂ (s)	Cd(NH ₃) ₄ ²⁺ (aq)	colorless

Fe³⁺, Ni²⁺ and Cr³⁺ detection

- Transition elements are usually highly colored.
- Of the 10 cations, three are transition elements and these have distinct colors.
- Iron (III): Rust colored, Ni(II) green and Cr(III) blue-green.

Fe³⁺, Ni²⁺ and Cr³⁺ detection

• A colorless unknown solution should inform you of the absence of these ions.

• A colored solution can hint at the transition metal cations present.

Fe³⁺, Al³⁺ and Cr³⁺ detection

• These ions are separated from the others by precipitating them as their hydroxides.

• The pH must be carefully controlled. If the pH is too high (basic), Mg(OH)₂ will also precipitate.

Controlling pH

An alkaline buffer of NH₃ and NH₄Cl provides enough OH to precipitate the Fe, Al and Cr cations and leaves the Mg²⁺ in solution.

What is a buffer?

- A Buffer is a chemical species which resists change in pH upon addition of small amounts of acid or base.
- A buffer consists of a solution of a weak acid and the corresponding conjugate base. One can also state it consists of a solution of a weak base and its conjugate acid. These two statements say the same thing. A buffer may be prepared from either a weak acid or a weak base. Both species must be present in solution at reasonable concentrations.

Two species are required in a buffer solution. One is capable of reacting with OH⁻ and the other will react with H₃O⁺. The two species must not react with each other.

Confirming Iron, Chromium and Aluminum

- To the three hydroxides add NaOH (a strong base) and H₂O₂ (an oxidizing agent)
- Fe(OH)₃ does not react
- Al(OH)₃ is amphoteric and dissolves and is colorless
- Cr forms CrO₄²⁻ yellow
- Fe is confirmed by addition of $K_4[Fe(CN)_6]$

Separation and detection of Ca²⁺

- 4 cations remain in solution: calcium, magnesium, nickel and zinc
- Addition of oxalate precipitates calcium and or magnesium.
- Calcium can be confirmed by a flame test.

Zinc and Nickel

- Zinc can be separated from nickel and magnesium.
- Zinc hydroxide is amphoteric and can be precipitated from acidic solution by addition of K₄[Fe(CN)₆], precipitating a gray-blue solid of Zn₃K₂[F(CN)₆]₂

Nickel

- Identification of nickel is from the soluble complex ion hexaamminenickel(II), [Ni(NH₃)₆]²⁺
- Addition of dimethylgloxime to this, forms a strawberry red solid, $Ni(C_4H_7N_2O_2)_2$

Magnesium

- Magnesium is confirmed by the addition of a magnesium reagent to a solution of Mg²⁺.
- Mg reagent: 0.1g pnitrobenzeneazorescorcinal + 1.0g NaOH per liter.
- This results in a blue colored oil (lake).